Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 12(1): 16913, 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2062254

ABSTRACT

COVID-19 mortality risk stratification tools could improve care, inform accurate and rapid triage decisions, and guide family discussions regarding goals of care. A minority of COVID-19 prognostic tools have been tested in external cohorts. Our objective was to compare machine learning algorithms and develop a tool for predicting subsequent clinical outcomes in COVID-19. We conducted a retrospective cohort study that included hospitalized patients with COVID-19 from March 2020 to March 2021. Seven Hundred Twelve consecutive patients from University of Washington and 345 patients from Tongji Hospital in China were included. We applied three different machine learning algorithms to clinical and laboratory data collected within the initial 24 h of hospital admission to determine the risk of in-hospital mortality, transfer to the intensive care unit, shock requiring vasopressors, and receipt of renal replacement therapy. Mortality risk models were derived, internally validated in UW and externally validated in Tongji Hospital. The risk models for ICU transfer, shock and RRT were derived and internally validated in the UW dataset but were unable to be externally validated due to a lack of data on these outcomes. Among the UW dataset, 122 patients died (17%) during hospitalization and the mean days to hospital mortality was 15.7 +/- 21.5 (mean +/- SD). Elastic net logistic regression resulted in a C-statistic for in-hospital mortality of 0.72 (95% CI, 0.64 to 0.81) in the internal validation and 0.85 (95% CI, 0.81 to 0.89) in the external validation set. Age, platelet count, and white blood cell count were the most important predictors of mortality. In the sub-group of patients > 50 years of age, the mortality prediction model continued to perform with a C-statistic of 0.82 (95% CI:0.76,0.87). Prediction models also performed well for shock and RRT in the UW dataset but functioned with lower accuracy for ICU transfer. We trained, internally and externally validated a prediction model using data collected within 24 h of hospital admission to predict in-hospital mortality on average two weeks prior to death. We also developed models to predict RRT and shock with high accuracy. These models could be used to improve triage decisions, resource allocation, and support clinical trial enrichment.


Subject(s)
COVID-19 , Hospitalization , Humans , Machine Learning , Prognosis , Retrospective Studies
2.
PLoS One ; 17(10): e0274098, 2022.
Article in English | MEDLINE | ID: covidwho-2054336

ABSTRACT

In response to the COVID-19 global pandemic, recent research has proposed creating deep learning based models that use chest radiographs (CXRs) in a variety of clinical tasks to help manage the crisis. However, the size of existing datasets of CXRs from COVID-19+ patients are relatively small, and researchers often pool CXR data from multiple sources, for example, using different x-ray machines in various patient populations under different clinical scenarios. Deep learning models trained on such datasets have been shown to overfit to erroneous features instead of learning pulmonary characteristics in a phenomenon known as shortcut learning. We propose adding feature disentanglement to the training process. This technique forces the models to identify pulmonary features from the images and penalizes them for learning features that can discriminate between the original datasets that the images come from. We find that models trained in this way indeed have better generalization performance on unseen data; in the best case we found that it improved AUC by 0.13 on held out data. We further find that this outperforms masking out non-lung parts of the CXRs and performing histogram equalization, both of which are recently proposed methods for removing biases in CXR datasets.


Subject(s)
COVID-19 , Deep Learning , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Radiography, Thoracic/methods , X-Rays
3.
Sci Rep ; 12(1): 1716, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1900583

ABSTRACT

The rapid evolution of the novel coronavirus disease (COVID-19) pandemic has resulted in an urgent need for effective clinical tools to reduce transmission and manage severe illness. Numerous teams are quickly developing artificial intelligence approaches to these problems, including using deep learning to predict COVID-19 diagnosis and prognosis from chest computed tomography (CT) imaging data. In this work, we assess the value of aggregated chest CT data for COVID-19 prognosis compared to clinical metadata alone. We develop a novel patient-level algorithm to aggregate the chest CT volume into a 2D representation that can be easily integrated with clinical metadata to distinguish COVID-19 pneumonia from chest CT volumes from healthy participants and participants with other viral pneumonia. Furthermore, we present a multitask model for joint segmentation of different classes of pulmonary lesions present in COVID-19 infected lungs that can outperform individual segmentation models for each task. We directly compare this multitask segmentation approach to combining feature-agnostic volumetric CT classification feature maps with clinical metadata for predicting mortality. We show that the combination of features derived from the chest CT volumes improve the AUC performance to 0.80 from the 0.52 obtained by using patients' clinical data alone. These approaches enable the automated extraction of clinically relevant features from chest CT volumes for risk stratification of COVID-19 patients.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Deep Learning , SARS-CoV-2 , Thorax/diagnostic imaging , Thorax/pathology , Tomography, X-Ray Computed , Algorithms , COVID-19/mortality , Databases, Genetic , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Prognosis , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards
SELECTION OF CITATIONS
SEARCH DETAIL